
Examen de thermomécanique des machines

Thermodynamique

On considère dans ce problème un cycle de Brayton appliqué à la réfrigération. L'ensemble, composé d'un compresseur, d'une turbine, de deux échangeurs et pour la partie III d'un récupérateur de chaleur adiabatique, est schématisé dans la figure ci-dessous. Dans cette utilisation, une partie du travail de compression nécessaire est fourni

par la turbine. On utilise l'air comme fluide dont les propriétés sont données dans le tableau en annexe.

La partie du schéma entourée de pointillés concerne le III du problème. Pour les parties I et II il faut relier directement (b) et (1) ainsi que (a) et (3) sans passer par le récupérateur.

I- L'air entre dans le compresseur en (1) à la pression de 100kPa et 270K; la pression sortie compresseur en (2) est de 300kPa.; la température à l'entrée de la turbine en (3) est de 310K.

Déterminer :

le travail spécifique absorbé par le cycle

la capacité de réfrigération en kJ/kg

le coefficient de performance de l'installation

 le coefficient de performance d'un cycle de réfrigération réversible opérant entre des réservoirs thermiques à Tf = 270K et Tc = 310K

II- On considère maintenant que compresseur et turbine ont respectivement des rendements isentropiques de 85% et 88%.

Déterminer :

le nouveau coefficient de performance

la génération d'entropie dans le compresseur et la turbine (l'air est considéré comme gaz idéal)

III- On modifie le cycle I précédent (fonctionnement isentropique) en introduisant un échangeur récupérateur de chaleur. Dans ce cycle l'air en sortie compresseur entre dans le récupérateur en (a) à 310K et ressort en (3) à 280K avant d'entrer dans la turbine. Le récupérateur est considéré comme parfait (Ta=T1,Tb=T3)

Déterminer pour ce cycle modifié :

la plus petite température

Le travail massique absorbé par le cycle

La capacité de réfrigération

Le coefficient de performance

On donne: R=8,314 J/mole.K , Mair =28,97 g , y=1,4

Sur Composition of the Compositi

Propriétés thermodynamiques de l'air (P = 100kPa) s° entropie absolue à la pression de référence standard pr et vr : pression et volume relatifs (non utilisé)

. pressic	il et volume le	naurs (morr uur	ise)		
T(K)	h(kJ/kg)	pr	u(kJ/kg)	vr	s°(kJ/kg.K)
200	199,97	0,3363	142,56	1707	1,29559
210	209,97	0,3987	149,69	1512	1,34444
220	219,97	0,469	156,82	1346	1,39105
230	230,02	0,5477	164	1205	1,43557
240	240,02	0,6355	171,13	1084	1,47824
250	250,05	0,7329	178,28	979	1,51917
260	260,09	0,8405	185,45	887,8	1,55848
270	270,11	0,959	192,6	808	1,59634
280	280,13	1,0889	199,75	738	1,63279
285	285,14	1,1584	203,33	706,1	1,65055
290	290,16	1,2311	206,91	676,1	1,66802
295	295,17	1,3068	210,49	647,9	1,68515
300	300,19	1,386	214,07	621,2	1,70203
305	305,22	1,4686	217,67	596	1,71865
310	310,24	1,5546	221,25	572,3	1,73498
315	315,27	1,6442	224,85	549,8	1,75106
320	320,29	1,7375	228,42	528,6	1,7669
325	325,31	1,8345	232,02	508,4	1,78249
330	330,34	1,9352	235,61	489,4	1,79783
340	340,42	2,149	242,82	454,1	1,8279
350	350,49	2,379	250,02	422,2	1,85708
360	360,58	2,626	257,24	393,4	1,88543
370	370,67	2,892	264,46	367,2	1,91313
380	380,77	3,176	271,69	343,4	1,94001
390	390,88	3,481	278,93	321,5	1,96633
400	400,98	3,806	286,16	301,6	1,99194
410	411,12	4,153	293,43	283,3	2,01699
420	421,26	4,522	300,69	266,6	2,04142
430	431,43	4,915	307,99	251,1	2,06533
440	441,61	5,332	315,3	236,8	2,0887
450	451,8	5,775	322,62	223,6	2,11161
460	462,02	6,245	329,97	211,4	2,13407
470	472,24	6,742	337,32	200,1	2,15604
480	482,49	7,268	344,7	189,5	2,1776
490	492,74	7,824	352,08	179,7	2,1776
500	503,02	8,411	359,49	170,6	2,21952
510	513,32	9,031	366,92	162,1	2,23993
520	523,63	9,684	374,36	154,1	2,25997
530	533,98	10,37	381,84	146,7	2,27967
540	544,35	11,1	389,34	200000000000000000000000000000000000000	2,27907
550	554,74	11,86		139,7	
560	565,17	12,66	396,86	133,1	2,31809
570	575,59		404,42	127	2,33685
580	586,04	13,5	411,97	121,2	2,35531
		14,38	419,55	115,7	2,37348
590	596,52	15,31	36:00,0	110,6	2,3914
600	607,02	16,28	434,78	105,8	2,40902
610	617,53	17,3	442,42	101,2	2,42644
620	628,07	18,36	450,09	96,92	2,44356
630	638,63	19,84	457,78	92,84	2,46048
640	649,22	20,64	465,5	88,99	2,47716
650	659,84	21,86	473,25	85,34	2,49364